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Foreword 
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Control Technology"; Work Unit U49, "Enhanced O&M of Pollution Control 
Equipment." The technical monitor was Chris Vercautren, HQIOC-EQC. 

This work was performed by the Environmental Processes (CN-E) Branch of the 
Installations (CN) Division, U.S. Army Construction Engineering Research 
Laboratory (CERL). The CERL principal investigator was Jearldine I. Northrup. 
Jerry Benson is Branch Chief, CECER-CN-E, and Dr. John Bandy is Division 
Chief, CECER-CN. The technical editor was William J. Wolfe, Information 
Technology Laboratory. 

The Director of CERL is Dr. Michael J. O'Connor. 

DISCLAIMER 

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names 
does not constitute an official endorsement or approval of the use of such commercial products. All product names and 
trademarks cited are the property of their respective owners. 

The findings of this report are not to be construed as an official Department of the Army position unless so designated by 
other authorized documents. 

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1   Introduction 

Background 

Laws and regulations mandate that Army installations monitor emissions from 
industrial processes, and maintain their processes within emissions standards. 
Failure to follow regulations may result in health and safety hazards to installa- 
tion employees and persons living in the surrounding areas, and may incur 
heavy fines for the installations. Army installations that have industrial opera- 
tions commonly use pollution control equipment (PCE) to monitor emissions, and 
to stay within regulatory and legal limits. PCE has become an integral part of 
manufacturing systems. 

Nevertheless, PCE is no "easy cure" for all problems of hazardous emissions. 
PCE must be carefully selected and used only in those applications for which it 
was designed. Users must take care that PCE is well matched when it is simply 
"added-on" to an established piece of machinery. Also, PCE, like any other com- 
plex machinery, requires maintenance for optimal performance. If PCE is not 
carefully operated and maintained, emissions from manufacturing processes 
may exceed limits and cause environmental hazards. Moreover, PCE mainte- 
nance is expensive and labor intensive, and often is not a high priority item in a 
manufacturing facility. 

Before investing dollars in expensive sensors and maintenance programs, manu- 
facturing installations should look at other available options. Options include 
using advanced technologies to detect problem conditions, collecting data to pre- 
dict and determine the cause of failures, using dynamic modeling techniques to 
model the system or components that have a higher than expected frequency of 
failure, and verifying the efficacy of the model with data collected from test runs. 

An earlier CERL publication (Northrup et al., September 1998) discussed prob- 
lems of design and their flaws and the problems associated with manufacturers' 
statistical analysis for failure mode of manufacturing. Other previous CERL 
work (Chalifoux, Northrup, and Baird 1999; Chalifoux, Northrup, and Chan 
1999) have shown that Reliability Centered Maintenance (RCM) usually depends 
upon test regimens rather than approaching the subject from a statistical view- 
point even though statistics have been used in manufacturing quite successfully. 
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Statistical maintenance modeling, even when approached from different initial 
viewpoints, reveals the impact of different maintenance policies. Until recently, 
large scale systems have escaped effective analysis. This study attempted to 
model large systems by using a model based on queuing theory, to produce a 
model that can reduce equipment downtime and help optimize maintenance pol- 
icy for minimal ecological impact. 

Objectives 

The objectives of the project were to investigate dynamic modeling and advanced 
maintenance technologies and the use of these technologies in detecting systemic 
problem areas. Another objective was to develop a dynamic computer model 
based on queuing theory and using off-the-shelf software to predict and analyze 
failure distribution in systems. 

Approach 

Advanced maintenance technologies and techniques for use in detecting problem 
conditions in industrial systems were studied. These technologies and tech- 
niques include dynamic modeling, acoustic emission methods, Failure Modes and 
Effects Analysis (FMEA), spectrum and waveform analysis, ultrasound, infrared 
thermography, and vibration monitoring. Reliability Theorem (RT) and its ap- 
plication to RCM, including a newer approach to RCM from queuing analysis, 
provided the basis for developing a computer model based on queuing theory to 
apply to complex systems. 

Mode of Technology Transfer 

It is anticipated that the queuing theory computer model and documentation will 
be available on the CERL web page, available at URL: 

http://www.cecer.army.mil/ 
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2  Dynamic Modeling - A Technique for 
Operation and Maintenance of Pollution 
Control Equipment 

Overview of Dynamic Modeling 

Researchers use models to explain real-world situations. Models begin as ab- 
stract ideas about reality. To implement a model, one must examine the assump- 
tions underlying the abstract ideas used to create the model. Models allow us to 
explain and sometimes predict the outcomes of the structural and dynamic as- 
sumptions that one makes in abstraction. Developing a model can be a compli- 
cated procedure, but the process can be simplified by identifying a set of general 
procedures. Figure 1 shows a simplified form of these general procedures. 
Sometimes real events cause us to look at particulars of these events, and in 
turn, these particular interests may be restated as a set of questions regarding 
the events and what brought them about. By identifying key elements of proc- 
esses and observations, we can form an abstraction of the real events. These key 
elements include both the variables that describe the events and the relation- 
ships among the variables. Ultimately, both the variables and their relation- 
ships establish the model's structure. We can then use the model to formulate 
conclusions and predict the outcome of future events. Comparing conclusions 
and predications to real events may reveal that a model is inaccurate, accept- 
able, or needs revisions. Model building is a continuum of revisions, compari- 
sons, and changes that all lead to a better understanding of the reality in ques- 
tion. 

Models may represent a specific phenomenon at a single point in time, such as 
the location and size of a city, or they may represent rates of change over time, 
such as the rate of migration to or from a city. The latter type of model is a "dy- 
namic model." The present study used the principles of dynamic modeling to 
construct computer models to predict PCE maintenance. Computer models help 
to clarify real-world processes because computer simulation can be applied to 
imitate the actual forces presumed to cause a system's behavior. 
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Figure 1. The process of model construction (Hannon and Matthias 1994, p 4). 

Initially, models should be kept simple. They may otherwise exceed the com- 
plexity of the real-world system that they were meant to explain. Complexity 
may be added later if the initial model does not produce the real effects. Models 
are causal because they are built from general rules that demonstrate how each 
element in a system responds to changes of other elements. A model is a device 
that keeps us organized during data gathering and evaluating knowledge about 
the mechanisms that lead to changes in a system. 

Systems 

Before developing a model of a system, it is important to understand some as- 
pects of systems. Systems include elements called variables. These are further 
described as state and control variables. State variables may be conserved or 
nonconserved. Conserved state variables denote an accumulation of materials or 
information, such as population. Nonconserved state variables are indicators of 
some part of a system's condition. Examples of nonconserved state variables are 
price and temperature. 

The elements in a system that represent changes in state variables are control 
variables or flows, and they are responsible for updating state variables. The 
"number of barrels of waste extracted per period" is a control variable as it 
changes the state variable "reserves of waste." 
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Another aspect of a system is the interaction of components within the system, 
in the form of feedback, both positive and negative. Feedback results from 
changes in a system component that cause changes in other components. 
Ultimately, these latter changes affect the component that originally initiated 
the change. If the series of changes strengthen the original process, then the 
feedback is positive. On the other hand, if the original change is counteracted by 
the series of changes, then the feedback is negative. Positive feedback processes 
magnify disturbance and move the system away from equilibrium. Negative 
feedback processes by counteracting disturbances lead a system toward steady 
state. 

Model Building 

According to Hannon and Matthias (1994, p 7), the model building process in- 
cludes a series of steps: 

1. Define problem and goals. Carefully structure the questions regarding the prob- 
lem you require the model to answer. Decide whether the goals of the model are 
to be descriptive or predictive. 

2. Designate the state variables. Keep this step simple and denote units for the 
variables. 

3. Select control variables. Choose control variables and corresponding flow controls 
into and out of the state variables. Record which state variables are donors and 
which are recipients in relation to the control variables. Also, note the control 
variable units. At this step, use one type of control to represent a class of similar 
controls. 

4. Select parameters for the control variables. When selecting parameters for con- 
trol variables, ensure that you know to which function the controls and their pa- 
rameters relate. Note the units for parameters. 

5. Check the resulting model. Check the resulting model for violations of laws, con- 
tinuity requirements, and consistency of units. 

6. See how the model will work. Choose the following: a time horizon, which you 
will use to look at the dynamic behavior of the model, the duration of each time 
interval for the updating of state variables, and the procedure for calculating 
flows. Using a graph, estimate the variation of the state variable curves. 

7. Run the model. Choose different lengths for each time interval and alternate the 
integration procedures to see if the results are the same. 

8. Vary the parameters. Vary the parameters to make sure the graph still makes 
sense. Revise the model to incorporate revisions to errors and irregularities. 
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9. Compare the results to experimental data. To do this, you may have to close off 
sections of the model so that you can simulate a laboratory experiment. 

10. Revise the parameters. Revise parameters to include exceptions to the experi- 
mental results and to increase the complexity of the model, if necessary. 

Modeling Nonlinear Relationships 

Linearity refers to lines, planes, and (flat) three-dimensional space, and these 
objects always appear the same from any aspect. A nonlinear object such as a 
sphere appears different on different scales. When it is viewed up close, it ap- 
pears as a plane, whereas from a distance it looks like a point. Nonlinear rela- 
tionships occur when a control variable does not depend linearly on other vari- 
ables, but for example, varies with the square root of another variable. 

Nonlinearities are especially important in developing models, as many real sys- 
tems are ruled by nonlinearities. Usually, nonlinear systems do not have specific 
mathematical solutions and often include characteristics that were not expected 
or that were incorrectly identified. These unexpected characteristics include 
chaos. In mathematical terms, chaos is unpredictable long time behavior that 
arises in a deterministic dynamical system, due to sensitivity to initial condi- 
tions. A dynamical system is one that has a state space, whose coordinates ex- 
plain its dynamical state at any instant of time. A dynamical system possesses 
also a dynamical rule that specifies the imminent future trend of all state vari- 
ables from the present values of the same state variables. Dynamical systems 
may be deterministic or stochastic. Most nonlinear science deals with determi- 
nistic systems. A dynamical system is deterministic if a unique resultant to each 
state exists, and a dynamical system is stochastic if more than one resultant se- 
lected from a probability distribution exists. Dynamical systems can also have 
discrete or continuous time. 

In discrete event models, there are events and specific time intervals between 
the events. The occurrence of events drives the model in discrete event models. 
Computer models of physical systems essentially are discrete approximations 
where a series of discrete events represents changes in system state. On the 
other hand, time moves forward at regular intervals; there is a direct relation- 
ship between processes and time, in continuous models. Deterministic differen- 
tial equations and algebraic equations are required to describe continuous 
simulation models. 
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3  Advanced Technologies for Operation 
and Maintenance of Pollution Control 
Equipment 

The researchers for this project studied advanced technologies available on the 
commercial market. Although many of these individual technologies are appli- 
cable to solve operations and maintenance problems at industrial installations, 
due to constraints of both budgets and personnel in the military we did not pro- 
pose their purchase and use. Instead we used the knowledge of the technologies 
only as a basis to advance our research of cyclic problems in undefined failure 
modes. The following examples, therefore, are included as reference material for 
those who may want to follow up on our investigations. 

Distribution Failure Prediction System 

This state-of-the-art system is designed to detect failure symptoms and incipient 
failures in distribution feeders. It allows the user to perform diagnosis and con- 
dition monitoring in distribution lines. By preventing distribution failures, 
power quality improves and optimal equipment operation is achieved. Figure 2 
shows a block diagram of the distribution failure prediction system. 

Signal Condition 
(Filter) 

Power System ^ CT&PT w W W 

1 r 
Distribute Failure 
Predicting 

4 
Data Acquisition 
Unit 

^ 

Figure 2. Block diagram of distribution failure prediction system 
(adapted from System Block Diagram. 
http://www.kevin.co.kr/enq/Product/1 /d 7.htmH 
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Features of the system include: 

• an expert system that used artificial intelligent language 
• an ability to predict the insulator failure 
• intelligent decisionmaking using frequency parameters. 

Object-Oriented Cognitive Decision Support Engine 

This system searches for data and returns the sources that are of particular in- 
terest to the decisionmakers' problem. The system uses a "smart scout" to track 
and identify data from static and dynamic databases, real-time instruments, im- 
ages (visual, radar, satellite), and direct input. It then notifies the decision- 
maker of changes in the data that affect the decision. 

This engine includes the following capabilities: 

• It manages the cognitive process and data mining operations through intelli- 
gent agents. 

• It develops data "scouts" that look at data sources and report changes. 
• It improves decisions based on past performance. 
• It allows changes in information that are reflected immediately in decisions. 
• It consolidates information from multiple distributed sources for human ac- 

tion. 

Source: http://www.nasec.ctc.com/manuknow/technica.htm 

Failure Mode and Effect Analysis (FMEA) 

This is a technique used to identify and eliminate known or potential problems 
from a system. FMEA should be integrated into the initial design review, and it 
should be an ongoing process throughout the life of the product. 

Failure mode is a function of a part number. In a given system, each component 
part number is analyzed to ascertain possible failure modes, for example, open, 
short, mechanical failure, etc. Theoretically, each part has limitless potential 
failure modes, but in reality there is a point of diminishing returns where the 
cost added exceeds the derived benefits. Failure modes that have the same effect 
may be combined and separated later if necessary. Initially, FMEA should in- 
clude all system components that would be repaired or replaced during a main- 
tenance activity, and other failure modes may be added as failures occur. 
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The effect of a part failure relies on how the part functions in the system. Even 
though two valves have the same part number, the effect of a failure rests on 
what each valve is governing. It is therefore imperative that each component in 
a system have a unique symbol independent of the part number. 

The relative importance of a failure mode is denoted by its RPN number, which 
is calculated from the formula: 

RPN = S*0*D Eq.1 

where: 
S =      the severity of a potential failure, which is assigned a value from 1 to 

10, where 10 is the most severe failure. 
O =      the occurrence of the failure (Relative Failure Rate) which is assigned 

a value from 1 to 10, where 10 is the highest failure rate. 
D =      the ability to detect a failure, which is assigned a value from 1 to 10, 

where 10 is the most difficult to detect. 

The fact that FMEA has not been widely used is due, according to discussions 
between engineers and researchers Jeong and Iizuka, to the following: 

1. FMEA is a time-consuming technique that gives unsatisfactory results. 
2. The prediction of failure mode depends too much on a predictor's experience and 

organizational information. Hence, failure mode omission will result. 
3. Evaluation of the seriousness of the failure mode is difficult. 
4. The experience gained from an FMEA is difficult to reuse. 

In response to the above criticisms of FMEA, Jeong and Iizuka proposed a tech- 
nique to prevent the above difficulties with FMEA. First, they investigated 
problems associated with failure mode prediction and suggested a method to 
predict failure modes effectively. Jeong and Iizuka proposed three approaches to 
effectively predicting failure modes with less omission: (1) failure mode predic- 
tion based on "association" (Yeong and Iizuka 1996), (2) preparation of Failure 
Mode Mechanism (FMM) diagram (Yeong and Iizuka 1997), and (3) failure mode 
prediction based on "hierarchy" (Yeong and Iizuka 1996). Second, they presented 
a method to analyze the cause and effect of failure modes effectively. Third, they 
applied these methods to refine the above proposals, to ensure the effective ap- 
plication of FMEA. 
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Equipment Monitoring 

Tracor, whose customers include the U.S. Navy, the National Aeronautics and 
Space Administration (NASA), ARPA, and several oil companies, defines six dif- 
ferent monitoring functions as follows: (1) continuous protection against cata- 
strophic failure, (2) early detection of machine abnormalities, (3) accurate diag- 
nosis of problem, (4) assessment of level severity, (5) accurate prediction of future 
machine condition versus time (including time to failure), and (6) generation of 
feedback information for control of machine operational characteristics. Each of 
these functions, although requiring different monitoring system design, begins 
with fault mode selection and data collection. 

Rotating Machinery Simulator 

This technology is designed as an educational tool for the study of vibration due 
to rotating machinery. It allows an operator to learn the principles of rotating 
machinery in a controlled environment. The main features of a commercially 
available rotating machinery vibration training tool are: 

rotating machinery vibration simulation 
multi-plane balancing 
dynamically induced structural vibration 
sixteen weight positions per plane 
two 100 mV/g accelerometers 
Magnetic tachometer for 1/rev signal 
50 piece balance weight kit with hex keys 
Optional configuration settings for popular balancing equipment 

Source: http://altasol.com/rmsO 1 .htm 

Predictive Diagnosis for Rolling Bearings 

Although many rolling bearings are used in a mechanical plant, failure of just 
one bearing can result in a total shutdown. Acoustic emission (AE) methods 
have shown great promise in the successful prediction of fatigue in rolling bear- 
ings. Analysis of the AE signal also yields information regarding fatigue crack 
propagation. 

Source: http://www.mel.go.ip/mainlab/kiso/kis01e.html 
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Infrared Thermography 

Infrared thermography is a technology that is used to survey machines and 
structures to detect problems. Operators employ portable infrared cameras to 
convert thermal energy into high-resolution images for quantitative temperature 
analysis. The images are collected in minutes and problems are immediately 
identified. The images can be stored on a computer and used for trending in en- 
suing surveys. Applications of infrared thermography include the following: 

• Electrical and mechanical maintenance. 
• Easy detection of overheating of bearings, switchgear, transformers, bus- 

bars, overhead power lines and substations. 
• Quick recognition of faulty components in electrical equipment. 
• In metal refining, smelting or sintering processes, refractory wear can be 

identified in pots, kilns, furnaces, ladles, and torpedo cars. 
• In buildings and cold storage units, insulation of boilers, pipework and 

steamtraps, the integrity of cladding can be easily monitored. 

Source: http://www.ozemail.com.au/~its3d/thermog.html 

Weibull Analysis 

The Weibull distribution analysis can be used to predict failure rates as well as 
to describe the failure of parts and equipment. The Weibull analysis provides 
information on: 

• characteristic life 
• standard deviation of life 
• mean life 
• reliability functions 
• reliable life 
• median life initial failure rate per unit time. 

Source: http://www.bassengineering.com/weibull.htm 

Fault Tree Analysis (FTA) 

FTA is an analytical technique that tries to combine all of the factors that affect 
the success or failure of a product, process, or mission into a single FTA Logic 
Diagram. A single FTA Logic Diagram uses symbols called "Logic Gates,", which 
are similar to the symbols used by electronic circuit designers.   The FTA Logic 
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Diagram proves to be a sound method to define the relationships between the 
hardware, software, and human components of a system. 

The inputs to a Logic Gate (symbol) depict the status of a part and/or other factor 
that is being included in the analysis. The output from a Logic Gate (symbol) is 
a logic state that represents a condition existing in a system. When the output 
from a Logic Gate changes, an event occurs. 

The state is TRUE if a part or other factor is functioning correctly. If the logic 
statement is TRUE, we assign to it a Boolean logic value of one (1). On the other 
hand, the state is FALSE if the part or other factor is malfunctioning. In this 
case, we assign to it a Boolean logic value of zero (0). 

A Fault Tree Analysis is actually performed by determining what occurs in a sys- 
tem when the status of a part or other factor changes. There is a minimum cri- 
terion for success, which is that one single failure cannot cause injury or an un- 
detected loss of control over the process. In the case where extreme hazards 
exist or during the processing of a highly valued product, the criterion may be 
augmented to require toleration of multiple failures. 

An FTA considers both positive and negative events. Logic tree segments that 
lead to a negative event, an accident, for example, define all of the elements that 
could go wrong to cause the negative event. The logic tree segments for negative 
events are apt to use more OR gates than AND gates, with the exception of re- 
dundant safeguards. Logic tree segments that lead to a positive event define 
everything that works together for the machine to operate. Logic trees for posi- 
tive events, for example maintenance troubleshooting trees, in general use more 
AND gates than OR gates, with the exception of redundancy. 

NAND and NOR gates primarily define countermeasures that, if true, allow the 
system to tolerate conditions that ordinarily result in safety hazards or machine 
failure. For more information on Boolean or logic functions and logic gates, ac- 
cess the following web site: 

Sources: 
http://www.bassengdneering.com/FTA.htm 
http://gatsbv.lit.tas.edu.au/tibs/mprinc/Iogicb.html 
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Power Loss of High Speed Spur Gears 

Power loss of high speed gears in industrial machinery leads to elevation of the 
temperature of the gears and their lubricant. Research showed the relationship 
between power loss and the mechanism of heat occurrence in an effort to create a 
gear transmission system of higher efficiency. Researchers measured the rising 
temperatures of the lubricant and gears that is converted into power losses of the 
gears. They analyzed the sources and characteristics of power loss by changing 
gear speed, tooth load, oil flow rate, and other running conditions of gears. The 
researchers correlated characteristics of power loss sources to the gear tooth 
form and other gear design parameters to reduce power loss. 

Source: http://www.mel.go.ip/mainlab/kiso/kis02e.html 

Artificial Neural Network (ANN) and Condition Monitoring 

In an ideal world, condition monitoring of a complex electromechanical plant re- 
quires the skilled personnel with knowledge of these systems. However, with the 
increasing depletion of such resources, ANN may offer a suitable alternative. 

Neural networks use a set of processing elements or nodes that are analogous to 
neurons in the brain. The elements are interconnected in a network that has the 
ability to identify patterns in data as the network is exposed to the data. Figure 
3 shows a schematic of a neural network. 

ZI     Z2 

XI    X2   X3    X4   X5 

Figure 3. The structure of a neural network. 
(http://www.zsolutions.com/light.htm) 
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In Figure 3, the bottom layer corresponds to the input layer, with 5 inputs XI 
through X5. The middle layer, which performs most of the work, is known as the 
"hidden layer" and contains a variable number of nodes. In this figure, the out- 
put-layer has two nodes, Zl and Z2, that represent the output values to be de- 
termined from the input values. Each node in the hidden layer is connected to 
the inputs. What is learned in the hidden layer is based on all of the inputs to- 
gether. In this layer, the network learns interdependencies in the model. Figure 
4 shows what happens inside a hidden node. 

A simplified explanation of Figure 4 is that a weighted sum is performed within 
the node: XI times Wl plus X2 times W2 through X5 and W5. Furthermore, for 
each hidden node and each output node, a weighted sum is performed. This rep- 
resents how interactions occur in the network. 

Although a closed mathematical theory for linear time-invariant systems exists, 
nonlinear systems lack an overall theory. To combat this, sometimes nonlinear 
systems are linearized around their operating points. Subsequently linear 
methods applied. The design of "universal" modules and structures for nonlinear 
systems, which can be used for identification, prediction, and control, remains an 
important issue. However, ANNs can learn nonlinear relationships relatively 
easily if sufficiently measured data and computing power are available. The 
learning ability of ANNs may help overcome the difficult mathematical analysis 
required to solve system identification and control problems in complex and 
highly nonlinear systems. Source: http://www.zsolutions.com/light.htm 

F'(l) 

X2       X3 

F(l)=X1*W1+...+X5*W5 

F'(l)=nonlinear transform of F(l) 

Figure 4. Inside a hidden node. 
(http://www.2solutions.com/liqht.htm) 
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4  Case Studies Using Advanced 
Technologies for Operation and 
Maintenance of Pollution Control 
Equipment 

Vibration interpretation Using Simulation and the Intelligence of 
Networks (VISION) Research Project 

The VISION Project is a collaborative industrial research project under the Brite 
EuRam III initiative. The Project commenced on 1 May 1996, and was scheduled 
to run for 3 years. There are nine partners in four countries engaged in the 
Project, which has a total budget in excess of 3 MECU. 

The objective of this project was to develop an intelligent, adaptive monitoring 
and diagnostic system. The system, based on artificial intelligence and simula- 
tion modules, analyzes vibration spectra data to sustain high-level equipment 
reliability. The artificial intelligence derives from the integration of neural net- 
works and knowledge-based systems. The identified aims of VISION are: 

• to develop a first level physical model (test rig) to represent a class of simple 
rotating machines (a rotor suspended between two bearings) 

• to develop a finite element model to mimic the vibration signals generated by 
the test rig in both no defect and defect modes 

• to verify the accuracy of the finite element model by comparing its output to 
actual data from the test rig under controlled experimental conditions and 
from actual plant data 

• to develop an intelligent software module using neural networks and knowl- 
edge-based systems to optimize the parameters of the finite element model 
that will bring its output close to real data generated by the test rig or 
equivalent simple machines 

• to develop a diagnostic system to determine the operating state of the test rig 
and subsequently the plant of the end-user, from observed real data 

• to develop a more complex second level physical model (test rig), by adding 
couplings and additional rotors and bearings 
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to expand the finite model to imitate the vibration signals generated by the 
complex test rig 
to compare the output from the expanded finite model to actual data from the 
second level test rig and actual plant data from the end-user sites 
to expand the intelligent optimization software module to accommodate a 
greater number of model parameters to represent more complex physical sys- 
tems. 

Source: http://157.228.102.29/vis-info/vis home.htm 

Eli Lilly Study 

The goals of the Eli Lilly study, conducted between February and October 1997, 
were: 

• to find the most efficient approach to identify misalignment problems in 
flexible coupling systems 

• to isolate the source of heat energy in a coupling 
• to identify different approaches to problem identification 
• to identify problems that are associated with over- and under-tension of belt 

driven mechanical systems and the implications of over lubrication in bear- 
ings 

• to quantify over consumption of power in a misalignment system. 

The procedure included setting up an apparatus on which various types of flexi- 
ble couplings were mounted between a 10 horsepower drive motor and a driven 
shaft that was adjustable to provide controlled misalignment. The study em- 
ployed a Fixturlaser Shaft 100 laser alignment system with one-micron resolu- 
tion to control the positioning of the shafts, as precise positioning of the appara- 
tus was a key to the success of the study. Researchers recorded the following 
observations: 

• motor current signature 
• motor temperature via thermocouples 
• motor and coupling temperature via infrared thermographic imaging 
• motor bearing vibration spectra 
• coupling airborne ultrasound spectra 
• bearing contact ultrasound spectra 
• load cell output. 
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The study provided the following general conclusions and recommendations: 

• In most cases axial vibration exceeded radial vibration. This confirms the 
rule that misalignment may be a cause when axial vibration is as great as 50 
percent of the radial vibration. 

• Sometimes misalignment causes high vibration at 2x rpm, indicating that 
response characteristics depend on coupling design and speed. 

• Coupling design impacts the amplitude of the vibration when various mis- 
alignment conditions are present. 

• Misalignment diagnosed solely from spectral data should be verified using 
phase data and ancillary technologies. 

Further study is warranted to evaluate the effects of bearing condition on re- 
sults. 

Although the results were mixed, the study supplemented the knowledge bank of 
information on rotating equipment and the application of advanced maintenance 
technologies to detect problem situations. The study researchers advocate a 
"large toolbox approach" to determine problems in systems or system compo- 
nents. The "large toolbox approach" involves the consideration and possible ap- 
plication of a variety of technologies to detect problems in mechanical and elec- 
trical systems. 

Subsequent to the study, Eli Lilly suggested the following approach: 

1. Find problems or potential problems quickly. 
2. Prioritize repairs. 
3. Make corrections as needed. 

Using infrared as a screening tool and applying the practices mentioned above, 
Eli Lilly has been able to inspect and rate or prioritize three times the amount of 
equipment for repair than before instituting this approach (Kelch 1998). 

General Electric (GE) Study of Primary Coiling Bearing Run-in 
Equipment 

The objective of the study that commenced in May 1998 was to design a control 
system for the primary coiling spindle run-in equipment. The following subsys- 
tem was included in the control system: spindle speed display, spindle speed 
control, bearing temperature monitor/feedback control and a PC user interface 
with data logging capabilities. To ensure full life from bearings, it is necessary to 
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run them in before placing them in service. The run-in system detects manufac- 
turing defects in the bearings. Four sets of bearings support the primary coil, 
and although the bearings are rated for 18 months of operation, they are failing 
in 6 months. The reason for the excessive failure rate may be due to an inconsis- 
tent run-in process. Subsequently, General Electric plans to use the run-in data 
to predict failure and to determine the cause of premature failures. 

The run-in process operates by varying the shaft speed from 2,000 RPM to 
30,000 RPM for a 10-hour period. The three methods for varying the shaft 
speeds for this time period are: 

1. To run the shaft at maximum speed for a time, then stop the shaft and allow the 
bearings to cool, and then repeat the process 

2. To continually increase the shaft speed over the entire time period 
3. To increase the speed in steps over the run-in period. 

Since the step method appears to cause some stress on bearings, GE researchers 
ran tests to study step-size and step-length. 

To ascertain the minimum step-size that should be used, researchers investi- 
gated the dynamic system, based on the following three characteristics: 

• The possibility of speed instability at the start of the process 
• The effects of vibration at resonant and harmonic frequencies 
• Speed surges occasioned by motor defects. 

Investigators studied each of the above three characteristics and suggested some 
guidelines for determining a suitable step-size: 

• Instability could occur with small step changes. Because one measures 
speed by counting the number of revolutions for a fixed time period, less error 
occurs in measuring speed at higher speeds. 

• Vibration effects were investigated. Researchers first established a reso- 
nant frequency and plan to make accurate measurements to determine con- 
sistent natural frequencies. Factors that affect natural frequencies and that 
need to be verified include: the bore diameter of the shaft collar, the bearing 
quality, and accelerometer testing over the range of operation on spindle as- 
semblies. 

• Motor wear affects the determination of step-size. Researchers found that if 
step size is not greater than 1,500 RPM, then surging of the starting torque 
may affect the settling time of the step. 
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The dynamics of the thermal system determine the minimum step-length. Re- 
searchers used two sets of sensors to conduct testing of the temperature sensors, 
and K-type thermocouples to verify the temperature sensor readings. Data were 
collected during the 78-minute test. 

Investigators completed initial modeling of the run-in process and ran an 8-hour 
test to verify the initial modeling of the system. The test data and the initial 
system model were nearly identical. 

The existing run-in system is an open loop system. Consequently, significant 
transients and variations of speed occur during the run-in process. To remedy 
this, it was decided to convert the open loop system to a closed loop one. The 
first step was to analyze and model the open loop system. The method used was 
to estimate the model from input/output data. Investigators required two pa- 
rameters from the experiment, the DC gain and the motor time constant. When 
these data were obtained from the test-run, they were plotted to obtain the 
steady-state response curve. To determine the transient response of the plant, 
the steady-state relationship was used to generate three input signals at three 
operating points. Researchers plotted the data obtained, overlaid with the input 
signal. Inspection of the graphs showed that the system could be modeled with a 
first order system. A first order model that provided a good approximation of the 
plant was produced, using a least squares error modeling technique. 

After considering all of the factors associated with the run-in process, the re- 
searchers made recommendations as to step-size, step-duration, and number of 
steps: 

• Step-size 
- No less than 2000 RPM 
- Avoid 16,000 as a step 
- Best operating point: 2500-3500 RPM 

• Step-duration 
- No less than 30 minutes 
- Monitor long term bearing temperature around 30,000 RPM 
- Best operating point: 30 minutes - 1.5 hours 

• Number of steps 
- Greater than 5 
- Less than 20 
- Best operating point: 7-12 steps 
- GE researchers believe that the proposed new unit will improve the 

run-in process for their primary spindles (Dubrawski et al. 1998). 
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5   Reliability Theory 

Reliability Theory Development 

Reliability Theory (RT) was originally developed as a way of describing the sta- 
tistical performance of equipment using measures like mean time-to-failure 
(MTTF), hazard rate, or system availability. But as RT became more sophisti- 
cated, researchers found that RT excels at describing the effectiveness of main- 
tenance policies. 

The field of RT has grown steadily since the 1930s. Reliability Theory's growth 
has been spurred by increasingly complex applications and increasingly sophisti- 
cated statistical methods. Arguably, RT went through its two largest growth 
spurts when applied to vacuum tube based computers in the 1940s and when 
applied to semiconductor fabrication plants in the 1990s. 

Early computers required thousands of vacuum tubes. By today's standards, 
they computed very slowly. Without optimized maintenance procedures, the 
mean time to failure could easily fall below the time required to run a complete 
program. This forced the electrical engineers responsible for maintenance to 
think carefully about the consequences of their procedures. The optimal mainte- 
nance policies these engineers invented are quite useful for optimizing mainte- 
nance strategy in the Army environment. 

During the 1980s and 1990s semiconductor fabrication plants rapidly increased 
the density of devices on a single chip. The machines used to produce such fine 
patterns on silicon wafers were terribly expensive photolithograph machines. In 
addition, these photolithograph machines each had a unique set of optical aber- 
rations that could not be reproduced exactly in another machine. Silicon chip 
designs incorporate several layers of devices that have to appear in exact regis- 
tration with other devices in layers both above and below. Therefore when add- 
ing a new layer, the wafer is brought back to the same photolithograph machine 
several times. Plants which are required to route a part to the same machine 
several times are said to be "re-entrant." 

The scheduling policies that optimize re-entrant plant performance are still 
poorly understood but several recent advances in queuing theory have yielded 
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methods that are superior to commonly used heuristic (exploratory self-taught) 
methods. The modeling tools that describe re-entrant plants also describe the 
maintenance process at the Department of Public Works (DPW) level. 

The initial models obtained in RT describe the behavior of a set of machines or 
parts that make up an entire system. For many years it was assumed that RT 
would advance as these models improved. This assumption was false in several 
important respects. From a mathematical standpoint, there are several common 
time-to-failure (TTF) distributions that can easi,ly be justified using sound phys- 
ics and engineering principles. Unfortunately these functions are sufficiently 
similar to one another that it takes a large number of experiments or voluminous 
field data to determine which function is correct. Appendix A gives an important 
example of this. Furthermore, there are practical problems with such models. If 
we own a motor and have a reasonable model describing its expected service life, 
there is little we can do to influence the situation. We are the motor's owner, not 
the manufacturer. Therefore, we only have control over our own maintenance 
policy. This is a common situation and has had a strong influence on RT re- 
search. 

We will show that the true power of RT lies in the optimization of our own main- 
tenance policies. Also, we will show that modern methods allow us to predict di- 
verse effects of our maintenance policies, including environmental impact, staff- 
ing levels, budgets, etc. 

The balance of this chapter summarizes the important results of RT . Actual 
derivations are included in the appendixes to this report for material that is not 
covered well elsewhere. References are given to other publications that give 
good expositions. 

Application of Reliability Theory 

One might ask, "Do we really care about exact failure mechanisms?" In fact, the 
answer might well be, "many times, we do not." At first this may seem strange. 
After all, we are attempting to optimize maintenance strategy with respect to 
failures of individual components. A simple example illustrates our counterin- 
tuitive answer. Suppose we have a device, for example, an electric motor. If we 
conjecture about the likely failure mechanisms, two are readily apparent. First, 
the device could fail as a function of how many hours it has been operated in to- 
tal. (An example of this mechanism is called "wear out.") Second, we could 
guess that the device might fail as a function of how many times it has been 
turned on and off.  (An example is a failure due to "thermal cycling.") We might 
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expect the TTF distribution for each of these processes to be different, and we 
might believe it to be important to know which process dominates the service life 
of our device. Surprisingly, the TTF distributions of these two mechanisms are 
so similar that they have no significant impact on our predictions. Appendix A 
gives a proof of this. 

The similarity of these two TTF distributions is a typical situation, which has 
several important consequences. First, with little data we can easily come up 
with a good guess of what the TTF distribution looks like and make reasonable 
guesses about the predicted service life of the device. In this way, we say that RT 
methods have "good predictive power." By the same reasoning, we possess little 
information about how to extend the service life of the device. If thermal cycling 
dominates the machine's life, it would be better to run it less often and for longer 
periods. On the other hand, if accumulated run time dominates the machine's 
service life, it would be better to run the machine more often for shorter periods. 
Because the TTF distributions are so similar, we cannot prescribe which course 
to take. For this reason we say that RT has "poor prescriptive power." Experi- 
ment is the best way to find out which failure mechanism dominates. 

Problems of this type where there are trade-offs between predictive power and 
prescriptive power, and where we are trying to guess the TTF distribution in the 
smallest number of experiments, are called problems of "system identification." 

In general, it takes an unacceptably large number of experimental trials to dis- 
criminate between two similar TTF distributions. For more detail see Wolsten- 
holme (1999). 

Hazard Rate-A Reliability Theory Measure 

Hazard Rate is defined as the fraction of working devices that fail per unit time. 
We shall show that it is one of the most useful measures in classical RT. A deri- 
vation of the following facts can be found in (Wolstenholme 1999). 

1. There is a one-to-one mapping between the TTF distribution and the Hazard 
Rate. That is, each TTF distribution has a unique Hazard Rate and each Hazard 
Rate has a unique TTF distribution. 

2. If the Hazard Rate is either constant or monotonically decreasing, the system it 
describes is called a "happy system." If the Hazard Rate monotonically increases, 
the system is called an "unhappy system." 
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3. RT can be vised to derive an optimal maintenance schedule for all unhappy sys- 
tems. 

4. RT gives no analytical method of optimal maintenance for happy systems. 

The reason for facts 3 and 4 is simple. The life expectancy of a happy system is 
either constant or increases with time, assuming the system is still running. 
That is, if we observe that a happy system is still running, our estimate of its life 
expectancy is either as long as a new machine, or even longer. The prime exam- 
ple of a happy system is software. Each time a bug is removed from a piece of 
software the next bug will either be just as hard to find as the previous one or 
even harder. If a piece of software runs correctly, the best maintenance policy is 
to let it continue to run (i.e., "Don't mess with it"). That is, any preventative 
maintenance we perform on the software is more likely to induce a new bug than 
fix an, as yet, undiscovered bug. (The reader may notice that this is one of the 
reasons that the so called Y2K or millennium bug is such a big problem. Many 
pieces of old software are so well debugged, that companies use them until they 
are far beyond obsolescence.) 

It should be clear why classical RT cannot yield an optimal maintenance strategy 
for happy systems. If you observe that your happy system is running, the best 
strategy is to let it keep running! 

An interesting sidelight is to notice that the dividing line between happy and 
unhappy systems is when the hazard rate is constant. This situation means that 
the TTF distribution is exponential. This explains, in part, why the exponential 
distribution is so useful in RT. 

However, the existence of happy systems poses a puzzle. If we need a large sam- 
ple of systems to determine if our system is happy or unhappy, how do we say 
anything meaningful about optimal maintenance in the mean time? Arriving at 
a meaningful answer to this question represents the dividing line between clas- 
sical and modern RT. 

Can We Cope with Happy Systems? 

Should we abandon RT when we do not know if the system is happy? No. Can 
we say anything meaningful about optimal maintenance of happy systems or 
about systems in general? Yes. The quickest way to see this is to study the 
mathematical definition of system availability. If we compute the fraction of 
time that the system is available for work it is easy to show that: 
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Availability = MTTF / MTTF + MTTR Eq.2 

where: 
MTTF = mean-time-to-failure 
MTTR = mean-time-to-repair 

That is, the system's availability depends on the MTTF which, in many cases, we 
cannot influence much because it was implicitly set by the equipment manufac- 
turer. But the systems' availability also depends on the MTTR over which we 
have complete control. 

This is the observation that makes RT useful in all situations, and has the larg- 
est impact on how optimal maintenance systems are structured. In fact, many 
modern researchers believe that this observation is so important that they refer 
to the resulting maintenance systems as implementing RCM. But drawing a 
sharp chronological dividing line between RT and RCM is misleading. It took 
many years for researchers in RT to realize that this scenario of reducing MTTR 
arose repeatedly. 

Non-Destructive Evaluation and Happy Systems 

Can a non-destructive evaluation (NDE) work with happy systems? Yes. Recall 
the definition of a happy system. When conditioned on the observation that the 
system is still running, a system whose life expectancy remains constant or in- 
creases is called a happy system. However, certain methods of NDE may exist 
that still accurately predict the demise of the system. That is, conditioned on the 
NDE observation, the system's life expectancy can decrease. To those unfamiliar 
with probability, this can be confusing at first. The easiest way to explain is that 
the NDE method may yield new information beyond the simple observation that 
"the system still runs." NDE can give early warning of system failure and allow 
the system operator to initiate procurement of appropriate components before 
they fail. In this way, the MTTR can be reduced thus increasing system avail- 
ability. 

The CERL-engineered management system for pavements has been in use at 
various municipalities and installations for many years. The PAVER system 
(Ginsberg, Shahin, and Walther 1990) has many components, but this, exposition 
focuses on only two: 
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There is an adaptive algorithm that predicts pavement degradation as a function 
of time. The adaptation has two purposes. First, it can adapt to local conditions 
such as pavement constituents, weather, and usage. Second, this adaptation im- 
plicitly gives rise to a modified version of Hazard Rate (for specialists, we are re- 
ferring to the rate of change in the pavement condition index [PCI]. Initially, it 
would seem that, if PAVER detects a constant or decreasing hazard rate (con- 
stant or decreasing rate of PCI degradation), that the system should recommend 
that the user discontinue usage of PAVER. 
A second component of PAVER allows users to predict their maintenance needs 
over an entire road network, and as a side effect, show them how to plan their 
out-year budgeting with minimal variation. This allows maintenance policy to 
harmonize well with budget policy. By correctly predicting the amount of money 
per year needed to maintain a particular road network and by minimizing the 
year-to-year variation in road repair dollars, PAVER would still be considered a 
useful tool even in situations where it does not reduce the overall cost of pave- 
ment maintenance. 

Reliability Centered Maintenance 

RCM recognizes the value of an organization's personnel and takes advantage of 
their extensive experience running the facility/equipment. The following catego- 
ries can be used to assist in classifying maintenance of equipment: 

• Corrective Maintenance (CM) or "run-to-failure" works on the assumption 
that it is most cost-effective to allow equipment to run unattended until it 
fails. Corrective Maintenance is used on the lowest priority equipment. 

• Preventive Maintenance (PM) is based on performing maintenance tasks on 
equipment at regular intervals, regardless of whether maintenance is actu- 
ally needed at the time. 

• Predictive Maintenance (PDM) is based on real-time data collected from a 
piece of equipment. These data show the current status of the equipment. 

• Proactive Maintenance (PAM) determines the root causes of failure. This in- 
volves going to the manufacturer for equipment redesign to avoid future 
breakdowns of the equipment (Reliability Centered Maintenance [RCM] - 
Tutorial and Application). 

Harmonizing Reliability Centered Maintenance with Army Policy 

RCM can, on occasion, reconcile disparate views of maintenance policy.   In the 
early 1990s, the Army decided on the basis of impending reduction in funding 
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that the infrastructure part of the budget would be cut rather than the training 
budget. The decision was made that the policy of run-to-failure would be the 
most cost-effective means of equipment maintenance. In the Army's accounting 
system, maintenance dollars come from a fixed funding line item. It makes no 
sense to organize an optimal maintenance program, because the cost of inspec- 
tion and early replacement would only deplete maintenance funds. But in the 
event of equipment breakage, the Army accounting system produces a minor 
miracle. The cost of repairing broken equipment on an emergency basis comes 
from the "capital improvements" budget that is separate from the maintenance 
budget. By using a strict run-to-failure policy, equipment managers can maxi- 
mize the funds used on their equipment. 

Unfortunately, it has been known for many years that this run-to-failure policy is 
the single fastest way to reduce the MTTF and decrease system availability. An 
example of this concept is the maintenance of vacuum tube computers. We will 
outline the methods here using this example because it contains several instruc- 
tive simplifications that will become apparent shortly. 

Consider a computer made up of a large number of vacuum tubes, each of which 
has the MTTF distribution shown in Figure 5. If we begin using a new computer 
containing new vacuum tubes and replace tubes as they fail during the first wear 
out cycle, the number of tubes replaced per unit time will look like the first 
hump in Figure 6. 
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Figure 5. Distribution of lamp life (Bazovsky 1961). 
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Figure 6. Wearout curves of three lamp generations (Bazovsky 1961). 

Notice that we enjoy a long period of reliable operation until the tubes begin to 
wear out. In the second wear out cycle, the number of tubes replaced per unit 
time will look like the second hump of the graph in Figure 6. The third wear out 
cycle will look like hump 3 in Figure 6 and so forth. (Note for specialists: The 
shape of hump "n" is the convolution of hump n-1 with hump 1.) The number of 
tubes replaced per unit time will be the sum of all of these humps and will look 
like the upper line of Figure 7. For further details, see Bazovsky (1961). 
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As time goes on, we will be replacing tubes constantly, this means that we have 
driven the MTTF down as far as it can go, and have exceptionally low availabil- 
ity. 

An alternative explanation is as follows. This is the reason people buy new cars! 
The idea behind buying a new car is that all of the parts of the car are new at the 
same time. This is analogous to the large time between when we begin running 
the computer and the first wear out cycle in Figure 6. As a car gets older, its 
components are replaced as needed so they are widely varying ages, and it seems 
like something is always going wrong. This is analogous to the high time be- 
havior of Figure 7. 

Thus we see that a run-to-failure policy is terrible for long term availability. Is 
there an alternative way to interpret Army policy, maximize our maintenance 
budget, and maximize the MTTF? Yes. If we keep track of mean service life of 
the unhappy components in our system an alternative policy is possible. We wait 
until breakdown. This lets us tap into the capital improvements budget. We 
then use these funds to fix the broken component and replace all other compo- 
nents that are beyond, or near their expected service life. This is sometimes 
called "renewing maintenance" in that it tries to achieve the longest possible pe- 
riod of high reliability between breakdowns. In this way we try to repeat the 
high reliability period before the first wear out peak of Figure 6, again and 
again. In the era of the vacuum tube based computers, engineers settled on the 
following maintenance procedure. Run the machine until the first vacuum tube 
blows, then replace all tubes in the blown tube's sub-system. This strategy was 
found to yield acceptable MTTF. 
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6   Queuing Theory 

A recent approach to RCM has come from new methods of queuing analysis. 
Queuing theory addresses the analysis of systems where many jobs are waiting 
for some service. Appendix B includes a summary of our current understanding 
of the behavior of closed queuing networks. It is important to remember that 
this is currently an active area of research. The contents of Appendix B are cur- 
rent, but will be quickly outdated over the next year. 

Queuing theory analysis can yield important information about the efficacy of 
maintenance procedures. From a queuing perspective, maintenance procedures 
are merely networks of jobs that await service from maintenance personnel. Al- 
though queuing theory has been used in one form or another since the early 
1900s, recent advances allow the analysis of much more complex networks. In 
the context of RCM, the most important developments of queuing theory can 
cope with several complexities common to most maintenance shops. 

Re-Entrant Lines 

In maintenance shops, the same job may require service from a single person 
several different times. For example, personnel responsible for procurement 
may see a single job several different times in the procurement cycle. 

Multiple Job Classes 

Maintenance personnel have many different types of jobs waiting for them at 
any one moment. They do not choose the next job randomly. They can distin- 
guish one job class from another and make a decision consciously. 

Service Policy 

At any one moment, one maintenance worker may have several different jobs of 
different classes waiting for service. The prioritization the worker assigns to 
these waiting jobs is called the service policy. 
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Stochastic Routing 

In many networks, jobs can be split up among maintenance personnel. 

Pre-emptive Scheduling 

If an especially important job arrives for service from a particular worker or set 
of workers, all other work may be suspended in order to service the important 
task. 

Down Time 

Maintenance workers, machines, or tools can have varying availability based on 
their own TTF and time-to-repair (TTR) statistics. 

Large Networks 

This new style of analysis can cope with enormous and complex queuing net- 
works. The technique was designed to cope with re-entrant routing in semicon- 
ductor fabrication plants where many products are in process simultaneously. 
For specialists requiring a detailed introduction to this style of analysis, we rec- 
ommend the article "Closed queuing networks in heavy traffic: Fluid limits and 
efficiency" (Kumar and Kumar 1996). 
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7  Queuing Theory Modeling 

One of the objectives of the project was to investigate the application of queuing 
theory modeling as an operations and maintenance tool for pollution control 
equipment. A queuing model usually includes one or more servers that render 
the service, a pool of customers, and some description of the arrival and service 
processes. If there is more than one queue for a server, then there may also be 
some policy regarding which customer receives service. In working with queuing 
systems, it is easiest to analyze the system in steady state (after the system has 
started up and things have settled down). Our analysis allows us to optimize for 
one or more of these performance measures. 

Throughput 

How fast do jobs go through the maintenance system? Can one predict how long 
a particular job will take? Recent analysis of semiconductor fabrication plants 
indicates that these new methods of analysis were able to speed up fabrication 
by 30 percent and decrease the variability of completion times by 60 percent. 

Queue Length 

How many jobs are likely to be waiting for any one maintenance worker at a 
given moment? Can a job be expedited without throwing off the schedule of 
other jobs? 

Failure and Repair Statistics 

Recent results show how to predict the equilibrium points of queuing networks 
(Ginsberg and Kumar 1997). This allows prediction of TTF and TTR statistics 
for the entire network and, hence, the reliability. 
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Staff Levels 

By calculating "what if scenarios with software, the number of maintenance 
workers and responsibilities can be optimized. 

Budgets 

Are budgets made more predictable? Yes. This is not an obvious result. Because 
the variability of the output of the system is reduced (see "Throughput" above) 
the out-year budget planning is more predictable. 

Ecological Impact of RCM 

Since "total time to repair" (TTR) statistics can be calculated for all machines, 
systems and subsystems, other performance statistics can be deduced easily. Of 
particular interest to the Army are the TTR statistics for pollution control 
equipment. The environmental impact of Army operations can be quantified as 
the average cost incurred given the reliability of the system. In this way the 
maintenance personnel may be able to justify increased expenditures, internal 
priority changes, and improved procurement documents because they can predict 
the total cost to the Army in advance. 
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8  Conclusion 

This study reviewed innovative methods of performing maintenance of pollution 
control equipment, specifically for application at Army installations. Previous 
CERL work has shown that RCM usually depends on test regimens rather than 
approaching the subject from a statistical viewpoint even though statistics have 
been used in manufacturing quite successfully. Statistical maintenance model- 
ing, even when approached from different initial viewpoints, reveals the impact 
of different maintenance policies. Large scale systems have escaped effective 
analysis until recently. This study has summarized recent attempts to model 
large systems by using a model based on queuing theory. Queuing theory makes 
statistical predictions that summarize how long it takes to repair a broken sys- 
tem, and predicts the availability of the system. 

By studying the methods being used now for RGM and the military's predilection 
to run-to-failure maintenance, this research has produced a linear program from 
the queuing model that can help reduce the downtime of the equipment, which is 
the intent of RCM. 

This study concludes that using these recent methods may allow U.S. Army in- 
stallations to optimize maintenance policy for minimal ecological impact. 
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Appendix A:   Time-to-Failure Distributions 

Equipment that fails randomly over its accumulated run time has an exponen- 
tial time-to-failure distribution. This distribution is: 

fit) = te~». 

The quickest way to see that this is correct is to notice that: 
00 00 

jf(t)dt = fte-*dt = l. 
-oo 0 

(i.e., f(t) is an actual distribution), and that: 

\-F(t) 

i.e., the exponential distribution is unique in having a constant hazard rate. The 
probability of failure on or before time t is: 

This is an important result, as will be shown shortly. 

Now consider a system that fails due to on-off cycles, for example, via thermal 
cycling. Suppose the probability that the system fails in any one cycle is "p," 
then the probability that it fails on cycle n is: 

p(n) = (\-p)"'Xp. 

That is, the system ran n-1 times and failed on the n-eth trial. This is a Ber- 
noulli distribution with parameter p. 

There are several ways to observe that the Bernoulli distribution is closely re- 
lated to the exponential distribution. 
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First, consider what we might mean by "a trial" in the Bernoulli distribution. 
For an electric motor that undergoes thermal cycling each time power is applied, 
this is obvious. Each time power is applied to the motor, we call this a trial. 
However, the distinction is not always as clear. Suppose we are meteorologists, 
and want to talk about quantities like a "30-year rain." At first, we may consider 
that this means we are talking about a Bernoulli distribution with p = 1/ 30years 
and n = number of years. In this way the chance of observing such a rain within 
n years is: 

±(i-PrP=i-(i-Py 

This result looks reasonable at first, but on closer inspection, this answer has 
several features that are difficult to explain. If n = number of years, this answer 
makes no sense from the standpoint of dimensional analysis where the exponent 
should be dimensionless. If there is more than one rain per year, then the num- 
ber of trials should not be in units of years, but in units of rainstorms. This is 
easily fixed by introducing a constant alpha = rains per year, and the above re- 
sult becomes: 

/ \an+] 

i-,-£    .- 
V     a) 

This lays bare the real objection. This answer should be invariant by choice of 
alpha (but is not). The time units in which we measure the result should not 
change the answer. Luckily we can take a limit in alpha: 

lim 
or-»°o 

1- 
/ \07! + l 

V     a 
1-e -pn 

which is clearly the exponential distribution associating p with lambda and n 
with t. 

Another way is to calculate the discrete version of hazard rate: 

H(n\= p(n) =   {
1
-PT

1
P   =  (

]
-P) 

l~F{n) i-±(i-PrP 
I~I+(I-PT] (i-pf 

rt=0 

which shows that the discrete hazard rate is constant. 

Finally, note that the graphs of these two functions are quite similar (Figure Al). 
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Figure A1. Exponential vs. Bernoulli failures. 
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Appendix B:   Closed Queuing Networks 

Recently much progress has been made on the study of closed queuing networks 
with a single route, i.e., when the routing matrix is irreducible. Let T°(N) de- 

note the throughput of such a network when the population size is TV, and the 
scheduling policy u is employed. For Markovian queuing networks with a single 
route, Jin, Ou, and Kumar were able to establish upper and lower bounds of the 
form: 

N -T*>Te{N)>-  N   ~ 
N + v N + v 

for all N. 

Above, T* is the throughput capacity of the system. Clearly v is a lower bound 

on the asymptotic loss which is defined as: 

l[mN[T*-T\N)]^ 

When the quantity T in the lower bound is also equal to T* then it follows that: 

lim Te(N) = T* 

and the network operated under the scheduling policy is said to be efficient. 
Moreover, in this circumstance, v is an upper bound on the asymptotic loss. In 
Jin, Ou, and Kumar linear programs are provided for determining the quantities 
y, v, T, and T*. The advantage of having throughput bounds as above is that 
they are functional bounds, i.e., they are valid for all N. Hence the determina- 
tion of y, v , X, and T* serves to bound the performance curve of the network un- 
der the given scheduling policy. 

In Kumar and Kumar a different approach was taken. There the fluid model 
approach pioneered by Rybko and Stolyar (1991) and Dai (1995) was extended to 
the study of closed networks. It was established that the entire class of Last 
Buffer First Serve (LBFS) scheduling policies is efficient for the case of a 
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deterministic closed route, i.e., closed re-entrant lines. These are scheduling 
policies based on buffer priorities, where some arbitrary buffer is designated as 
the "last" buffer, and priority is given to buffers that are closer to the end. Thus 
the stability of LBFS for open systems was extended to closed systems. 

Earlier, using a formal approach based on Brownian networks, Harrison and 
Wein (1990) had conducted an analysis of closed networks with two stations, and 
conjectured that a specific policy, called the HW-policy, was asymptotically opti- 
mal. By this is meant that its asymptotic loss is less than that of all other poli- 
cies. This was done by examining a particular RBM process, and conjecturing a 
formula for the asymptotic loss of all buffer priority policies. The particular HW 
policy was characterized by certain indices for buffers, called the HW-indices, 
which are used to prioritize the buffers. In Kumar and Kumar (1994) it was also 
proved that the HW policy is indeed efficient for all two station closed re-entrant 

lines. 

The HW policy and the conjectured asymptotic loss formula were examined in 
Jin, Ou, and Kumar. There it was established that its value for T was indeed 
equal to T*, thus establishing its efficiency. Moreover, it was established that no 
policy could have an asymptotic loss strictly smaller than the conjectured loss of 
the HW policy. Simultaneously, an additional condition was identified in Jin, 
Ou, and Kumar, which is missing in the work of Harrison and Wein (1990) and it 
was established that under this condition, all non-idling policies are indeed effi- 
cient, and moreover no such policy could have an asymptotic loss strictly greater 
than that of the exact opposite of the HW policy, dubbed there as the Anti-HW 

policy. 

Earlier, it was already established in Harrison and Nguyen (1958) that the 
closed version of the system in Kumar and Seidman (1990) and Lu and Kumar 
(1991) was indeed inefficient, thus establishing that not all policies can have fi- 
nite asymptotic loss, and thus also that the conjectured formula for asymptotic 
loss in Harrison and Wein (1990) cannot hold in full generality. 

More recently, Morrison and Kumar (1996) have turned to examining the issue of 
necessary conditions for efficiency of all non-idling scheduling policies in closed 
re-entrant lines. They have established that the condition earlier identified by 
Jin, Ou, and Kumar as being sufficient for efficiency is actually necessary too, 
when the inequality is allowed to be non-strict. 

All these studies however, have been confined to closed networks with just one 
loop. In many application areas however, several closed loops may simultane- 
ously exist.    One example is communication networks where several origin- 
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destination pairs are each controlled by window based flow control policies. A 
widespread example of this is TCP/IP, which regulates the window size dynami- 
cally so as not to overload the network. Another example is manufacturing sys- 
tems where several part types are made. If the number of parts of each type is 
regulated at a fixed level, then again one obtains closed networks with multiple 
routes. 

The purpose of the present paper is the study of such closed systems with multi- 
ple routes. In such systems there is a population vector made of one population 
level for each route. Also one has a vector throughput where each component is 
the throughput of a particular route. Our goal is to study the behavior of the 
vector throughput as a function of the vector population, both for particular 
buffer priority policies as well as the class of all non-idling policies. 

Consider a network with B stations labeled br..bB. There are L routes (or loops) 
through the system. The routes are specified by a routing matrix ps, which is the 
probability of moving next to buffer j, after having visited buffer i. Buffer i is 
served by station a(i). Customers in buffer b; require an exponentially distrib- 
uted service time with mean l/u;. 

Let T8'r[N) denote the throughput of route r under a given scheduling policy u 

when the population vector is N. Here N=(N15...,NL) where NL is the population of 
loop route L. Also let v=(vlV..,vL) denote the asymptotic loss, when the popula- 
tion proportions in the routes are held constant, but the total population in- 
creases to infinity. The main results are the following. 

Theorem 1: Bound on weighted throughput. 

Let aL be the fraction or the total population stored in loop L of a closed loop sys- 
tem. Let 7i be the concatenation of the steady-state probability vectors for com- 
municating classes of the routing matrix P, i.e., of the various loops so that 
^.   ni - 1.  Consider first the following linear program with decision variables 

{TL, q,, Wni, «, f L}: 

J^aLTL 

subject to: 
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Denote by T* the value of this LP.   Consider now a second linear program with 
the same set of decision variables: 

mm in(v) 
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ieL 

T*<Y,aLTL. 

Denote the value of this LP by v. 

Then: 

r(N)<—— T*. 

Theorem 2: Lower functional bound on weighted throughput. 

Consider first the linear program: 

max Y.a'T1 

subject to: 

. . v    U
J* Mi 

P{i)Mi) 

f 

\ 
-4jj+<ljj+\ 

f, 
L{j) \ 
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ij a\'hJ    r' 
ä(i)*a(j) 
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fi 
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V -TL{i)+ui+^wn.<0 
n*a(i) 
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Denote by T the value of the LP, and consider the second linear program: 
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Let v denote the value of the LP. 

Then: 

T
U
{N)> 

N 
N + v- 

These bounds can be used to study the behavior of loop interaction, priority in- 
teractions, and population level interactions in closed queuing networks with 
multiple roots. Two illustrative examples are provided below to illustrate the 
technique as well as illuminate some interesting phenomena in multi-loop sys- 
tems. 
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Example 1. 

Consider the system shown in Figure Bl, with the means of the service times Ji 

= {1/3, 2/7, 3/11, 1, 3, 2}, and giving priority to buffers b1} b2 and b3. Designate the 
loop containing buffers hv b2 and b3 as loop 1 or "the slower loop" due to its serv- 
ice rates. Using the theorems above, the infinite population throughput extrema 
are found to be the same (T* = T) independent of the choice of loop population 
fraction (a ) and weighting vector (c ) (see Figure B2). Further, the throughput 
is invariant with changes in loop fraction population (a). However, plotting the 
asymptotic loss does show a variation with loop fraction population (a). These 
can be seen in Figure B3 showing y , and Figure B4 showing v . 

Clearly, with buffers b19 b2 and b3 having priority, the system favors the slow loop. 
As we increase the total population, we expect that the system will slow down as 
the fast loop stagnates for lack of service time. Figures B3 and B4 indicate that 
this transition takes place more slowly with increasing total population when the 
population distribution favors the faster loop. 

Example 2. 

Retaining the same system configuration from Figure B2, consider now the mean 
service times Ji ={1/3, 2, 3/11, 1, 3, 2/7}, and giving priority to buffers bv b6, and 
b3.  Figure B5 shows that T*& T for every value of loop population fraction (a ) 

and weighting factor (c ). This is not a trivial observation. Figure B6 shows the 
summary of the throughputs obtained from one long simulation conducted at 
each of a large number of population levels, with population fractions fixed at 
(a ={1/2, 1/2}). An explanation for this intriguing graph may be the presence of 
two basins of attraction in the Markov state space. The communication rate be- 
tween the two basins of attraction is extremely small so that once the system is 
captured by one of the two attractors, it stays there for the duration of the 
simulation. This result also demonstrates that the practice of "mixing" or taking 
an average of simulation results can be quite misleading in queuing applications. 
Finally, the result indicates that flow control schemes based on window size may 
succeed or fail based on the transient characteristics of the network and not 
steady-state behavior. 
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Figure B1. Multi-loop system (Ginsberg). 

Figure B2. Throughput as a function of loop fraction population 
and weighting vector (Ginsberg). 
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Figure B3. Lower bound asymptotic loss as a function of 
loop fraction population and weighting vector (Ginsberg). 

Figure B4. Upper bound asymptotic loss as a function of 
loop fraction population and weighting vector (Ginsberg). 



56 CERL TR 99/88 

Figure B5. Theoretical bounds and simulation of throughput as 
a function of total population (Ginsberg). 
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Figure B6. Summary of throughputs (Ginsberg). 
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